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Abstract. We propose a new, controlled approximation scheme that explicitly includes the effects
of non-local correlations on the D = ∞ solution. In contrast to the usual D = ∞ case, the self-
energy is self-consistently coupled to two-particle correlation functions. The formalism is general,
and is applied to the two-dimensional Falicov–Kimball model. Our approach possesses all the
strengths of the large-D solution, and allows one to undertake a systematic study of the effects of
inclusion of k-dependent effects on the D = ∞ picture. Results for the density of states ρ(ω),
and the single-particle spectral density for the 2D Falicov–Kimball model always yield positive
definite ρ(ω), and the spectral function shows striking new features inaccessible for D = ∞. Our
results are in good agreement with the exact results known from the 2D Falicov–Kimball model.

The effects of strong correlations on the properties of low-dimensional lattice fermion systems
is still an open problem, in spite of many efforts spanning over thirty years. Recently, the
development of a dynamical mean-field theory (DMFT), exact in D = ∞ dimensions, has
led to a major advance in our understanding of the physics in the local limit [1, 2]. DMFT
is a non-perturbative scheme. It has provided a detailed picture of the Mott transition in this
limit, and has been fruitfully applied to a large class of models. Moreover, it has proved to
be a rather good approximation to actual three-dimensional transition-metal and rare-earth
compounds [2]. In spite of its successes, DMFT has its shortcomings: the single-particle self-
energy is k-independent, and so is not coupled to k-dependent collective excitations. This is
clearly serious, e.g. near a magnetic phase transition where it cannot show any precursor effects.
A consequence of the above is that the single-particle spectral function cannot access such
effects, and so the approach cannot be employed to describe e.g. angle-resolved photoemission
experiments, or to study the changes in Fermi surface topologies driven by interactions for
finite D. The above makes it imperative to develop such controlled extensions of DMFT as
are able to rectify its unphysical aspects, while preserving its strengths.

The DMFA maps the lattice system onto a self-consistently embedded ‘impurity in a bath’
problem that describes the effects of the coupling to other lattice sites. As in a Weiss mean-field
theory, a self-consistency condition is obtained by requiring the averaged Green’s function of
the bath G0 to coincide with the local G at this impurity site. The DMFA becomes exact
for D = ∞ because one can show that the spatial correlations fall off at least as 1/D|i−j |/2

with distance |i − j | [5]. This ‘Weiss field’ still has a non-trivial dynamics described by an
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effective local action SDMF obtained by integrating out all sites excluding the impurity site.
Given SDMF , one can compute the one-particle Green’s function at this site, Gimp(ω), which
is a functional of G0(ω). The self-consistency condition that links Gimp back to G0 is solved
iteratively. The main drawback of this method is that � is k-independent.

In this paper, we present an extension of the DMFT that allows one to treat effects of
non-local spatial correlations. To do so, we exploit the freedom involved in choosing the input
bath propagator. We account for non-local correlations via the self-consistent inclusion of the
two-particle correlation function in the bath Green’s function (GF) G0(ω). This is achieved
by using the spectral density approximation (SDA) [4]. Thus, our aim is to show that a proper
combination of two methods—DMFT and SDA—is eminently suited to describing 1/D effects
in lattice-correlated fermionic systems. As far as application is concerned, we deal with the
FKM, as it was the first model to be solved exactly for D = ∞. Attempts at a 1/D expansion
for the FKM have also been made. Finally, there exist some exact results on the 2D FKM
which are of great help in evaluating the quality of our approximation, making it a first choice
for testing methods in the context of extensions of the DMFT.

Recently, Hettler et al [3] have considered the role of short-range correlations in the
Falicov–Kimball model by employing the ‘dynamical cluster approximation’ (DCA). The
DCA extends the DMFT by attempting to treat intracluster correlations exactly, and embedding
this cluster in a dynamical bath. The influence of non-local correlations on the DOS, as well
as on the critical temperature for transition to a checkerboard phase [7], is investigated, and
it is found that Tc is depressed by non-local effects, as expected. However, the influence of
these correlations on the single-particle spectral function A(k, ω) has not been investigated.
Given a k-dependent self-energy, the bandstructure and Fermi surface topology are changed
via Ek = εk + �(k, µ) and Ek = µ, where µ is the chemical potential. Furthermore, results
available on the 2D FKM clearly reveal the opening up of a gap associated with Fermi surface
nesting for any U . This is not the case in the results of Hettler et al. We show in this work that
the route considered here is consistent with the above statement, and allows one to compute
A(k, ω) as well. It should be stated that we are not aiming for an exact 1/D expansion, which
would be beset with intractable difficulties. Our aim is rather to devise a scheme that includes
non-local correlations while keeping the strengths of the D = ∞ approach intact.

We now present this new method. We begin with the formalism for the generic Hubbard
model at zero temperature. We then go to the FK to solve the full set of self-consistent
equations. We will focus on half-filling; the extension away from n = 1 is straightforward.
The Hamiltonian is

H = −
∑
〈ij〉,σ

tσ (c
†
iσ cjσ + h.c.) + U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ

on a D-dimensional lattice. The Hubbard model is obtained when t↑ = t↓ = t , and the FKM
is given by t↑ = t and t↓ = 0. In the case of half-filling, µ = U/2 by particle–hole symmetry.
These models have been extensively studied using the DMFT.

We get a bath propagator which includes 1/D effects using the SDA, first pioneered by
Roth [4] to describe magnetism in narrow bands. Its basic idea is to compute exactly the first
few moments of the spectral density to reconstruct the spectral function A(k, ω). With H as
above, it is easy to compute the first four moments. They are given by the expectation value
of the following n-fold commutator:

M
(n)
kσ = 〈[· · · [[c†

k,σ , H ], H ], . . . , H ]〉. (1)

Using usual scaling arguments [5], one sees that the higher n, the higher will be the powers of
1/D involved in the nth moment. In the case of a generic Hubbard model, it turns out that the
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M
(3)
kσ contains all the o(1/D) contributions. It can be written as

M
(3)
kσ = o

(
1

D0

)
+ U 2n−σ (1 − n−σ )Bkσ

with

n−σ (1 − n−σ )Bkσ = 1

N

∑
〈ij〉

{t−σ 〈c†
i−σ cj−σ (1 − 2niσ )〉 − tσ [〈ni−σ nj−σ 〉 − n2

−σ

− 〈c†
iσ c

†
i−σ cj−σ cjσ 〉 − 〈c†

iσ c
†
j−σ cjσ ci−σ 〉]e−ik·(Ri−Rj )}. (2)

The SDA then permits one to write an explicit closed-form expression for

Aσ (k, ω) = δ[ω − εk + µ−�0,σ (k, ω)]

where �0,σ (k, ω) is given—for the generic Hubbard model—by

�0,σ (k, ω) = Un−σ + U 2n−σ (1 − n−σ )[ω + µ− U(1 − n−σ )− Bkσ ]−1.

This is the self-energy in the SDA. It is interesting to notice that all the order-1/D correlators
enter only through Bkσ , whereby the self-energy acquires a non-trivial k-dependence. At this
stage, this quantity is undetermined, and will have to be obtained self-consistently. The SDA
one-particle Green’s function can then be computed as G0σ (k, ω) = [ω− εk −�0,σ (k, ω)]−1.

We now consider the FKM, (t↓ = 0). In this case, the model has a local U(1) symmetry,
[ni↓, H ] = 0 ∀i. It thus follows from Elitzur’s theorem that only the second correlator in Bkσ

is non-zero. Considering the conduction electron (↑-spin) Green function, the equation for
Bk↑ shows that the correlation function involving correlated hopping of the ↓-spins is zero.
This leads to

n↓(1 − n↓)Bk↑ = − t

N

∑
〈ij〉

e−ik·(Ri−Rj )[〈ni↓nj↓〉 − n2
↓] = −tχ↓(k) (3)

where χ↓(k) is the order-1/D static structure factor of the down-spin electrons.
It is interesting to notice that the only order-1/D contribution to the single-particle self-

energy is in fact χ↓(q). The above equations are exact in the band as well as in the atomic
limit, as can easily be checked. This has important consequences, for it points to a way to
achieve further improvement of the formalism. It allows one to formulate a DMFT for the
local part, more or less along same lines as for D = ∞ [2]. However, in contrast to the case
for the regular DMFT where �0↑ = 0, G0 contains information about non-trivial k-dependent
features. Therefore, using this SDA G0↑ as the input one-particle bath Green’s function in a
new DMFT scheme allows one to introduce in a simple way the non-local spatial fluctuations
at order 1/D in the FKM.

We now come to the computation of the dynamical correlations. This results in a
dynamically corrected self-energy. To do this beyond the single-site level is a problem that
has not been attempted, and here we use the standard DMFT as an approximation to the 2D
case. In the case of the half-filled FKM, the method drawn along the lines sketched above can
be developed the following way.

As is known [7, 8], the equation-of-motion method (EOMM) gives the exact solution to
the FKM for D = ∞. We will use the EOMM to get the full (local) impurity Green’s function
which we denote by Gimp,↑(ω).

The closed set of equations for the on-site Green’s function with a bath having �0,↑(k, ω)
as a self-energy is given in reference [8], replacing εk by εk + �0,↑(k, ω).
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The local G↑ is computed to have the same form as that found in [2], and the local self-
energy is computed from Dyson’s equation, �imp,↑(ω) = G−1

0,imp,↑(ω) − G−1
imp,↑(ω) where

G0,imp,↑(ω) = [ω + µ−!(ω)]−1, with

!(ω) =
∑

k

t2
k

ω + µ− εk −�0,↑(k, ω)
. (4)

One then gets

�imp,↑(ω) = Un↓ +
U 2n↓(1 − n↓)

ω + µ− U(1 − n↓)−!(ω)
. (5)

This local dynamical self-energy is used to correct the local part of the bath self-energy
given initially by the SDA, to introduce dynamical effects in the k-dependent bath GF. This is
done using

�↑(k, ω) = �imp,↑(ω) + �0,↑(k, ω)−
∑

k

�0,↑(k, ω) (6)

and provides us with a dynamically corrected non-local Green’s function

G↑(k, ω) = [ω + µ− εk −�↑(k, ω)]−1

which is exact in both the atomic and the band limits. The density of states is then obtained
by taking the imaginary part of the k-summed G(k, ω). The above procedure in fact gives the
exact result for the D = ∞ FKM. This is seen easily from the fact that the SDA self-energy
becomes k-independent in this limit, so the last two terms in the above equation for the full
self-energy become identical, giving �↑(k, ω) = �↑(ω), the D = ∞ self-energy for the
FKM.

To complete the procedure, one should self-consistently compute the order-1/D correlator
which enters the bath Green’s function as announced earlier. In the case of the FKM, this means
one has to compute the down-spin static susceptibility. To begin with, we compute the vertex
function exactly forD = ∞. The full χ↓(q) is then obtained from the Bethe–Salpeter equation
in the framework of the EOMM [7]. The result is χ↓(q) = n↓(1 − n↓)/D(q), where

D(q) = 1 −
∑
ν

dn↓
dG−1

ν

∂�ν

∂n↓

∣∣∣∣
Gν

G2
ν + χ0

↑(q)

G2
ν[χ0

↑(q) d�ν/dGν + 1]
(7)

and

χ0
↑(q) = (−1/N)

∑
k

G↑(k + q)G↑(k)

where the ν-sum is over the Matsubara indices (we take the zero-temperature limit). In the
above, the vertex corrections in the equation for the charge susceptibility of the down-spin
electrons are approximated by their D = ∞ values. To compute the vertex function exactly
to order 1/D would be a formidable task; this has not been successfully attempted even for
the electron gas.

To sum up, the equations (3)–(7) above form a complete set of self-consistent equations
for the FKM. These include explicit 1/D effects through the k-dependence of �0,↑(k, ω). To
solve these equations, we start with an arbitrary χ↓(q) as an input in our initial G0↑. This
is used to compute �0,↑(k, ω), and the full Gimp,↑(ω) from the large-D solution along the
lines of [8]. At this step, we have a DMF approximation to the FKM that is equivalent to a
self-consistent loop, with an external input quantity, the structure factor. The second step of
our method is to compute χ↓(q). For this purpose, we use the DMF approximation to the
structure factor equation (7), plugging the G↑(k, ω) obtained along with the full local vertex
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function in the Bethe–Salpeter equation to compute χ↓(q). This is fed back into the equation
for �0,↑ and the whole process is iterated to convergence. The difference between the regular
self-consistent DMFT and our method is illustrated in figure 1.

We implemented this new method numerically to study the Falicov–Kimball model
on a 2D square lattice at T = 0. The up-spin electron dispersion relation is thus εk =
−2t (cos kx + cos ky), and the corresponding density of states has a Van Hove singularity at
ω = 0. The k-sums are performed on an L × L mesh, while the ω-integrals are computed
using standard integration procedures, using a small broadening η to represent δ-functions.
Convergence is obtained when

χ2 =
∑
ω

|Gnew(ω)−Gold(ω)|2 < ε

where ε is a small threshold. At each step of the iterative process, a check on the accuracy of
the computation is provided by the Luttinger sum rule

∑
k

∫ µ

−∞
dω Aσ (k, ω) = nσ

which must be satisfied to high accuracy.
We now describe the results of our computation. Working with a lattice size L = 64,

and a threshold ε = 10−9, we observe a very fast convergence of the double self-consistent
procedure, that needs fewer than ten steps to reach the convergence threshold for G↑(ω). The
Luttinger sum rule is satisfied with an error of less than 10−3.

Figure 2 shows the density of states (DOS) ρ(ω) obtained by our method for several values
of U/t . Firstly, notice that this function is always positive definite, in contrast to the results of
reference [9]. This is a positive feature of the present method. We should stress that we are
interested in the effect of coupling of the self-energy to 1/D fluctuations, which, for the FKM,
are completely static. The effect of the interaction is very clear. Starting from the 2D free-
fermion value at U/t = 0, it opens a gap at ω = 0. The critical (U/t)c for opening up a gap is
very small. As a matter of fact, working with a L×L lattice we cannot resolve energy details
smaller than 2πvF /L � 0.2 here. However, playing with the parameters of the problem, we
see a real gap withU/t as low as 0.1. This result agrees with the exact result on the 2D FKM at
weak coupling [12], where the gap and the related checkerboard order arise from the nested FS
at n = 1. The fact that a gap opens up for arbitrarily small U in our results reflects the fact that

ω )

G(ω)

G (
O

(a)

ω

ω

G (   )
O

(q)χ

(b)

)(G

Figure 1. (a) The self-consistency loop in usual DMFT. (b) Our method: k-dependent features
are incorporated via an external input χ↓ to the bath Green’s function G0, which is computed
self-consistently as shown.
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Figure 2. The DOS for the 2D Falicov–Kimball model for several values of U/t at half-filling,
with our method. It is always positive definite. The inset shows the behaviour of the U/t = 2 gap
at ω = 0 when changing the artificial broadening η of the δ-functions: η/t = 5 × 10−2, thick line;
η/t = 5 × 10−3, thin line; and η/t = 2 × 10−4, dashed line.

the q-dependence in the non-local susceptibility χ↓(q) (see below) shows up in the non-local
self-energy. In contrast, it is well known from the exact D = ∞ solution that a charge gap
opens up only when U � W , the free bandwidth. Thus, we are able to demonstrate how
the effects of coupling the non-local susceptibility to the single-particle self-energy results in
conclusions drastically different from those obtained for D = ∞. The inset of figure 2 shows
the behaviour of the DOS at low frequency for U/t = 2, obtained by changing the broadening
of the delta functions to get a better precision. The features observed at higher frequencies are
related to the unperturbed 2D bandstructure and are absent for infinite D.

The computed χ↓(q), which contains information about long-range order (LRO), shows
interesting behaviour; along the zone diagonal, at the point k = [π, π ], it is a constant,
scaling approximately with lattice size. This is the expected behaviour in the broken-symmetry
phase [13], and implies that the n = 1 ground state is characterized by checkerboard LRO
of the down-spin electrons [10]. In reference [13], the behaviour of χ↓(q) can be studied
only in 1D, because of finite-size restrictions. In contrast, our approach yields unambiguous
conclusions in the thermodynamic limit in 2D. Again, this is in clear agreement with the exact
result [12].

The greatest advantage of our method, however, is that it allows a detailed study of
k-dependent (at the order of 1/D) effects in the one-particle spectral function A(k, ω) =
−ImG(k, ω)/π . In figure 3, we show A(k, ω) for k along the zone diagonal from k = 0
to k = (π, π) for a representative value of U = 4t . We notice that A(k, ω) satisfies
all the symmetry properties consistent with those expected from pure nearest-neighbour
hopping on bipartite lattices, and with particle–hole symmetry: A(k0, ω) = A(k0,−ω) for
k0 = [π/2, π/2], while along the zone diagonal A(k0 + δ, ω) = A(k0 − δ,−ω), ∀δ along
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Figure 3. The spectral function A↑(k, ω) for the 2D Falicov–Kimball model at half-filling, for
U/t = 4, and k along the zone diagonal, k = (nπ/8, nπ/8), n going from 0 to 8.

the zone diagonal. We show only the A(k, ω) for ω < 0; the ω > 0 part can be obtained
from the symmetry property mentioned above. We have checked that our calculations are fully
consistent with the above property. Moreover, we see that since Q = [π, π ] is a nesting vector
in 2D, the above property of A(k, ω) with δ = [π/2, π/2] leads to a natural explanation of
the ‘shadow-band’ features observable in ARPES. It would be very interesting to see whether
they survive away from n = 1.

It is instructive to compare our results to those obtained by Velický et al [11] in their
pioneering paper on CPA. CPA is equivalent to the exact D = ∞ result for the FKM, and
so a comparison with [11] allows us to study the effects of 1/D effects on A(k, ω). A
comparison of our data with results for identical parameters from [11] shows that the coupling
to 1/D fluctuations induces new features in A(k, ω) compared to those observed in DMFT.
For D = ∞, A(k, ω) has a two-peak structure with the dispersion controlled solely by the
free bandstructure. In our approach, this is modified because of the extra k-dependence
coming through the Bk↓. This shows that a formalism capable of explicitly treating intersite
correlations permits one to access k-dependent features in A(k, ω), so we suggest that this
method can be fruitfully applied to compute ARPES lineshapes in correlated systems. The
formalism presented here could also be applied to the computation of effects of short-range
order (SRO) in binary alloys, where the ↓-spin structure factor would be replaced by the alloy
structure factor. A more detailed application to spectroscopy would require the use of the
actual bandstructure DOS, and is left for future work. Application to the Hubbard model
would require a self-consistent evaluation of all the correlation functions, including the spin-
flip and pair-hopping correlators in Bkσ derived in this paper. To do this is a much harder task,
which we plan to attempt in the future.

In conclusion, we have developed a simple, physically appealing way to study the effects
of non-local spatial fluctuations on the single-particle spectral properties. We have applied
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the formalism to compute the single-particle spectral function and the DOS for the 2D FKM
and have obtained results in good accordance with what is known from the exact solution.
Extensions of the work to look at the metallic phase in the FKM off n = 1, as well as for the
Hubbard model, are being studied and will be reported on separately.
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